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1 Introduction

The Euler equation of motion for fluid flow is obtained from the Navier-Stokes
equation by setting the viscosity equal to zero. While this simplifies the analysis
of the fluid motion somewhat, the equations are still non-linear, and a closed-
form solution to them does not exist. For flow about a slender body in two
dimensions, they are written as

∂Q

∂t
+

∂E(Q)
∂x

+
∂F (Q)

∂y
= 0

with

Q =

 ρ
ρu
ρv

 , E =

 ρ
ρu2 + ρ

ρuv

 , F =

 ρ
ρuv

ρv2 + u


Here we will consider the flow past a thin airoil, so these equations are applicable.
For the problem at hand, we assume that the flow is uniform (ρ = 1, u =
M∞, v = 0) at inflow, and we use it as the referene state for local linearization.
As in the project description, we rewrite the equations in quasi-linear form,
using e.g.

∂E

∂x
=

∂E

∂Q

∂Q

∂x
= A

∂Q

∂x

which gives us
∂Q

∂t
+ A

∂Q

∂x
+ B

∂Q

∂y
= 0

where

A =

 0 1 0
−u2 + 1 2u 0
−uv v u

 , B =

 0 0 1
−uv v u

−v2 + 1 0 2v


To simplify the application, we freeze A and B at the reference state ρ = 1, u =
M∞, v = 0 so that they become matrices with constant elements
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A =

 0 1 0
−M2

∞ + 1 2M∞ 0
0 0 M∞

 , B =

 0 0 1
0 0 M∞
1 0 0


Now the elements of our vector Q represent small perturbations from a

uniform flow in the x direction. The Mach number is M∞ and equations can be
used to study subsonic to supersonic small disturbance flow over slender bodies
or past surfaces with small surface variations. The matrix A has real distinct
eigenvalues M∞,M∞ + 1,M∞ − 1 and B has the eigenvalues 0, 1,−1 so the
system is hyperbolic in time. It is this form we will use to approximate the flow
of air around the foil

2 Computational Methods

2.1 Spatial Difference Approximation: Finite Differences

We first begin by turning the partial differential equations (PDEs) describing
our system into a coupled system of ordinary differential equations. This is
accomplished by approximating the spatial derivative

R(Q) = −A
∂Q

∂x
−B

∂Q

∂y

with a finite difference method. Two methods will be considered here: a flux
splitting scheme with 2nd order one-sided differencing (with 1st order one-sided
differencing at the boundaries) and a compact differencing scheme.

The first scheme uses flux splitting with backward (δb) and forward differ-
encing (δf ) and is given by

R(Q)n
j,k = −A+δb

xQn
j,k −A−δf

xQn
j,k −B+δb

yQn
j,k −B−δf

y Qn
j,k (1)

The exact form of δb and δf are outlined in the text. 2nd order one-sided
differencing is used in the grid interior while 1st order one-sided differencing is
used near the boundaries. Despite the use of the first-order differencing, 2nd

order global spatial accuracy is maintained. We know that for the x direction,
the taylor error, ert goes like

ert =
∆x2

3
(
∂3u

∂x3
)j

And the same relation holds for the y direction. The modified wave numbers
for the first order method are

ik∗b,f
x =

±(1− cos(kx∆x)) + i sin(kx∆x)
2∆x

and those for the second order method are

ik∗b,f
x =

±(3− 4 cos(kx∆x) + cos(2kx∆x)) + i(4 sin(kx∆x)− sin(2kx∆x))
∆x
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again, the same relations hold in the y-direction.
The second scheme is a compact scheme given by

(
∂Q

∂x
)j+1 + 4(

∂Q

∂x
)j + (

∂Q

∂x
)j−1 = − 3

∆x
(−uj−1 + uj+1) (2)

As indicated in the text, the taylor error for this method goes like

ert =
∆x4

120
(
∂5u

∂x5
)j

making it fourth-order accurate. The modified wave number for this method
was calculated as a homework problem, and is given by

ik∗ =
3i sin(k∆x)

(2 + cos(k∆x)∆x

Implementing this method requires inverting a banded tri-diagonal matrix
of the form B(1,4,1) in order to gain the increased spatial accuracy.

2.2 Time-Marching Methods

After approximating the spatial derivatives in the problem, we integrate the
solution forward in time by turning the coupled set of ODEs into Ordinary
Difference Equations (O∆Es). The methods considered here will be the Euler
Explicit (EE) method and a Fourth-Order Runge-Kutta (RK4) method. These
methods are defined as

Qn+1
j,k = Qn

j,k + hR(Q)n (3)

and
Q̂

n+1/2
j,k = Qn +

1
2
hR(Q)n (4)

Q̃
n+1/2
j,k = Qn +

1
2
R(Q̂)n+1/2

Q
n+1

j,k = Qn + hR(Q̃)n+1/2

Qn+1
j,k = Qn

j,k +
1
6
h[R(Q)n + 2(R(Q̂)n+1/2 + R(Q̃)n+1/2) + R(Q)n+1]

where h=∆t is the timestep used.
As discussed in class and in the text, time-marching methods approximate

the value of eλh with σ-roots. The relationship between the σ-roots and λ for
the the EE and RK4 methods are

σ = 1 + λh

and
σ = 1 + λh +

1
2
λ2h2 +

1
6
λ3h3 +

1
24

λ4h4
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3 The Physical Set-Up

The spatial and temporal methods described in the previous sections can now
be used to model small disturbance flows in a physical space. We will use a
uniform grid in a two-dimensional range specified by -1 ≤ x ≤ 3 and 0 ≤ y ≤
2. The surface disturbance will be a thin airfoil with a surface described by

ywall = τx(1− x)/2 0 ≤ x ≤ 1

ywall = 0 x < 0, x > 1

And the boundary conditions that will be used are the following

1. At inflow (x=-1): ρu=M∞, ρv=0, and ∂ρ
∂x = 0

2. At the top (y=2): ρ=1, u=M∞, v=0

3. At outflow (x=3): ∂Q
∂x = 0

4. At the bottom (y=0): v is specified with thin airfoil conditions using

v = M∞
∂ywall

∂dx

This set-up thus assumes we have some constant source of airflow at the inflow
and that the upper portion of the domain is off at infinity. To model it numer-
ically, we break the region up into a discrete set of grid points. The surface of
the airfoil is one unit long in physical space and we divide it into nx discrete
grid points. So this determines the physical spacing between grid points as

dx = dy =
1

nx− 1

The grid will then consist of int(4/dx + 1) × int(2/dy + 1) points. They are
indexed by (column, row) as (j, k).

To integrate the equations, we must start with some initial value for the grid
points. The initial condition that will be used is

Q(0) =

 1
M∞
0


representing uniform density over the whole grid, a uniform x velocity of M∞
and zero velocity in the y-direction. We should expect that due to the presence
of the airfoil, some motion of the air should transfer to the y direction over time.

When we integrate forward in time, we must choose a value for the timestep,
h = ∆t. This is accomplished by defining a CFL number, and for this project I
have chosen

CFL =
h(2 + M∞)
min(dx, dy)

This ratio has units of time/length (the mach number is dimensionless) and
is degenerate in the sense that the same CFL number can represent different
spatial and temporal scales as long as their ratio remains constant.
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4 Choosing the right CFL number

The simulations of the physical situation described will be run using combi-
nations of the spatial and time-marching methods described above. For fixed
value of nx, dx, dy and M∞ we expect different behavior if we vary the CFL
number (corresponding to a change in the timestep h). For certain values of
this parameter, we should expect the solution to approach a steady state where

R =
∂Q

∂t
= −A

∂Q

∂x
−B

∂Q

∂x
+ bc = 0

while for others, we should expect the solution to blow up as time advances.
Furthermore, certain values of the CFL should result in a faster convergence of
the solution to a steady state than others. This behavior can be understood
by doing a periodic analysis of the solutions. To do this, we first consider the
equations in the following form

∂Q

∂t
= (−A

∂

∂x
−B

∂

∂y
)Q + bc = AQ + bc

where Ā is the ’signature matrix’ of the problem. It is a difference matrix that
characterizes the physics and methods being used in the problem.

If we now consider that the value of Qj,k can be expressed as a sum over the
possible wavenumbers of the grid being used, i.e.

Qn
j,k =

kxmax∑
kx=−kxmax

kymax∑
ky=−kymax

Ckx,ky
σn

kx,ky
Xkx,ky

+ AQ−1bc (5)

It is evident that the transient term in (5) will blow up if the value of any of
the σkx,ky

are greater than 1. In order to check whether or not the σkx,ky
are

greater than one, we can use the modified wave numbers of the particular spatial
method we are using in place of the difference operators as in

(−A
∂

∂x
−B

∂

∂y
)Qn

j,k = (−Aik∗x −Bik∗y)Qn
j,k

and obtain a 3× 3 matrix for each set of wavenumbers. With these, the σ − λ
relationship can be applied in matrix form. The magnitude of the eigenvalues of
the sigma matrix will then determine whether or not the solution will be stable
or not.

The file Final Project Sigma Lam.m performs this analysis for a choice of
spatial differncing and time-marching methods. It computes the maximum value
of σkx,ky

for a range of CFL numbers, and plots them. The plots show where
the transition between stable/unstable behavior occurs (i.e. where σkx,ky goes
above one and indicates the approximate CFL number where this occurs. It is
clear from this analysis that the Euler Explicit method will be unstable for all
CFL values if combined with the compact scheme or the flux splitting scheme,
as show in the figure below.
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Figure 1: Plots showing that σkx,ky vs. CFL for the EE method when used with
the flux-vector splitting or compact spatial methods

On the other hand, for the RK4 method the analysis shows that there are
ranges of CFL number for which both the compact and flux vector splitting
spatial methods are stable. The transition should occur around CFL=.8 for
the flux splitting method and at about CFL=1.9 for the compact scheme. The
file Final Project Sigma Lam.m also outputs the value of the CFL number for
which the smallest maximum value of σkx,ky

occurs. According to the analysis,
this CFL should produce the fastest convergence (i.e. the smallest residual at a
given timestep as discussed in the text).

Figure 2: Plots showing σkx,ky
vs. CFL number for the RK4 method when used

with the flux-vector splitting or compact spatial methods.
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5 Results

The simulations were performed in Matlab with a modified version of code pro-
vided by Thomas Pulliam. The two main files used were Final Project 8 flux so.m
and Final Project 8 compact.m. These pertain to the flux vector splitting and
compact spatial difference methods, respectively.

The simulations were first run using the Euler Explicit method on the uni-
form grid discussed above. As predicted, this method is unstable for all values
of CFL number when used with the compact or flux vector splitting spatial
methods. For low CFL, the densities and velocities stay within a reasonable
range for a while, but eventually blow up with time.

The simulations were first run for a range of CFL numbers with constant
values of nx, dx, dy and M∞ in order to verify the stability predictions made
in the last section. The table below shows the results for the RK4 and second-
order upwind flux-splitting schemes with values of nx = 10 (corresponding to
dx = .1111), and M∞ = 0.8, after 1000 time steps. The residual at timestep n,
rn, is defined as

rn =
‖R(Q)‖

Nelements(R(Q))
and the slope is simply rn − rn−1. These parameters give us an indication of
how close to convergence the solution is and how quickly it is converging or
diverging at a given timestep. A small value of rn means the elements of the
difference matrix are small, meaning that the value of the elements of Q will
not change significantly at the next timestep.

CFL ρmax ρumax ρvmax Slope Residual
0.1 1.007 0.802 0.031 -0.000001356120 0.000452865486
0.2 1.006 0.802 0.031 -0.000000547674 0.000378402891
0.3 1.006 0.802 0.031 -0.000001158779 0.000265631962
0.4 1.006 0.802 0.031 -0.000001382082 0.000126390302
0.5 1.006 0.802 0.031 -0.000000156949 0.000036812463
0.6 1.006 0.802 0.031 -0.000000041620 0.000020786115
0.7 1.006 0.802 0.031 +0.000000005969 0.000009955311
0.8 1.006 0.802 0.031 +0.000000009069 0.000006183199
0.9 1.006 0.802 0.031 +0.000000002887 0.000003718333
1.0 939.9 1141 217.3 +9.773625746298 2847.928039149

Table 1: Values of the physical and computational quantities at a timestep
of 1000 for the RK4 method used with Second-order flux splitting in space.
Simulations were run at nx = 10 (corresponding to dx = .1111), and M∞ = 0.8

It is evident from this table that somewhere between CFL=0.9 and CFL=1.0,
the behavior goes from being stable to unstable. Upon further inspection of the
CFL number in this range, we find that the transition occurs close to CFL=0.98.
This does not agree with the predicted value, but some discrepancy is to be ex-
pected since the analysis performed assumes that we can describe the values at a
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given grid point with periodic functions. Also, the definition of the CFL number
being used is a conservative one, and this creates some error in our estimate.
The transition from stability to instability is very interesting. As mentioned in
the text and in class, increasing the timestep is useful for advancing the solution
to a steady state, but it also increases the error during the intermediate times.
It is apparent that to some degree, the smaller the timestep, the less error there
will be at a given timestep. For instance, if we use CFL=.32 and 60 timesteps,
we advance to the same physical time as if we use CFL=.96 and 20 timesteps.
However, the behavior is radically different. This is illustrated in figure 3.

Figure 3: Plots showing results for the same physical time using different CFL
numbers. The upper plots are color-density plots and the lower plots indicate
the residuals.

We see that for the case of CFL=.32 and 60 timesteps, the density looks like
a valid approximation for wind moving over an airfoil. On the other hand, using
CFL=.96 produces a non-physical result at 20 timesteps. Both of these choices
will eventually converge to a physical steady-state, but the former provides a
better simulation of what happens in the meantime than the latter.

Results for the Compact scheme discussed above are full of errors, so they
will not be presented here.

6 Concluding Remarks

The simulations used here are a drastic simplification of what would really hap-
pen if wind was to flow over an airfoil; they use linearized versions of the Euler
Equations and do not conserve physical quantities such as energy. However, they
still provide a reasonable model for air moving over an airfoil. Moreover, the
analysis performed here provides insight into the subtleties of modeling physics
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on a computer. This project showed the ways in which error can be induced
in a simulation and the accuracy to which one can work by employing different
computational methods. With further education in the subject, I hope to gain
a better understanding of how to employ these methods and how to diagnose
errors in my simulations. This project seems to be a good start.
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