
2002 Python for Scientific
Computing Workshop

numarray

Perry Greenfield
Space Telescope Science Institute

2002 Python for Scientific
Computing Workshop

Who: Cast of Developers

• Perry Greenfield: original framework
• Todd Miller: most of past and ongoing development, chararray,

memmap.
• JC Hsu: recarray
• Rick White: design and early coding
• Jochen Krupper: updates to manual, conversion to Python doc

format, work on libraries.
• Phil Hodge: original adaptation of manual
• Paul Dubois: Porting of MA package (soon)
• The past Numeric Developers!

– Jim Hugunin, Konrad Hinsen, David Ascher, Paul Dubois,
Travis Oliphant

2002 Python for Scientific
Computing Workshop

What is numarray?

• Numeric descendant and replacement
• Features:

– Sub-classable arrays
– User specifiable buffer, offset, and basic stride.
– Operation on misaligned or byte-swapped arrays.
– Operation on memory-mapped arrays.
– Generation of C-code from templates
– Increased use of Python in implementation
– More flexible IEEE error handling
– Index arrays

2002 Python for Scientific
Computing Workshop

Numarray Class Hierarchy

NDArray

NumArray CharArray

RecArray

2002 Python for Scientific
Computing Workshop

Where is numarray now?

• Virtually all the base functionality of Numeric exists
in numarray.

• Has nearly all the desired new functionality.

• Generally as fast (if not faster) for megabyte sized
arrays (but much slower for small--< 10K elements).

• FFT, RandomArray, LinearAlgebra libraries ported.

• Corresponding documentation (except for C-API)
exists (i.e., manual).

2002 Python for Scientific
Computing Workshop

The BIG Question: Why?

We (STScI) needed capabilities that Numeric could not
provide…easily anyway. Some background:

• Astronomical community has two large analysis
contingents: IRAF and IDL-based.

• STScI trying to develop an environment that takes
the best from both areas.

– PyRAF to run IRAF tasks

– Python/Numeric for IDL-style development

• But astronomers deal with big data sets: Memory
issues!

2002 Python for Scientific
Computing Workshop

The BIG Question: Why? (cont.)

Manipulating large astronomical images is very
memory intensive.

• Hubble Space Telescope now generates 4Kx4K
images (64MB).

• Ground-based telescopes have 8Kx8K detectors or
larger (256MB!).

• We also have much data in record format (“ tables”)
with large data files as well (>100MB)

We wish to write Python programs to access such data.

2002 Python for Scientific
Computing Workshop

The BIG Question: Why? (cont.)

Accessing tables cuts both ways. (Columns may be of
different numeric types, or even strings.)

• By column

• By row

Numeric forces you to copy columns to individual
arrays.

• Wastes memory

• Makes changing rows difficult

Desire generalization: arrays of records

2002 Python for Scientific
Computing Workshop

Example RecArray Usage

>>> import recarray

>>> a=recarray.array("a"*75, "r,3i,5a", shape=(3,), names=“theReal,theInts,theString”)

>>> print a

RecArray[

(2.5984589414244182e+020, array([1633771873, 1633771873, 1633771873]), 'aaaaa'),

(2.5984589414244182e+020, array([1633771873, 1633771873, 1633771873]), 'aaaaa'),

(2.5984589414244182e+020, array([1633771873, 1633771873, 1633771873]), 'aaaaa'),

]

>>> a.field(“ theReal")

array([2.59845894e+20, 2.59845894e+20, 2.59845894e+20], type=Float32)

>>> a.field(“ theInts”)

array([[1633771873, 1633771873, 1633771873],

[1633771873, 1633771873, 1633771873],

[1633771873, 1633771873, 1633771873]])

>>> a.field(“ theString”)

CharArray(['aaaaa', 'aaaaa', 'aaaaa'])

2002 Python for Scientific
Computing Workshop

The BIG Question: Why? (cont.)

Use memory mapping to reduce memory demands.
• But that brings new problems, I.e., byte order.
• Very difficult to handle with Numeric.
Record arrays (tables) require being able to construct

numeric arrays with odd offsets between elements.
• Alignment problems.
• Also very difficult to handle with Numeric.
Numeric type conversion creates large temporaries.

These three were the killer issues that ruled Numeric
out. But there are others.

2002 Python for Scientific
Computing Workshop

Why: Other Numeric issues

• Guido won’ t accept Numeric into Standard Library

– Code too hard to understand and maintain.

• Scalar/Array type coercion wastes memory.

• Wasn’ t subclassible (well, not when we started,
anyway).

• Missing unsigned ints.

• More convenient use of index arrays

• Weak IEEE support

2002 Python for Scientific
Computing Workshop

How: Implementation

How to handle various representations (type, byteswap,
alignment) without impacting speed and memory use?

Studied:
• Functional – easy to implement, but too slow
• Combinatorial – efficient, but enormous code bloat
• Temporaries – fast, but far too memory intensive
Instead:
• We chose a hybrid of functional and temporaries.

When transformations are needed, we do so in blocks,
not too big, not too small.

2002 Python for Scientific
Computing Workshop

How: Philosophy

• Do as much in Python while optimizing large array performance
(our need, after all).

• Defer all other optimizations as late as possible.
– Small array performance suffers (for now)
– Indexing performance suffers

• Initially we intended for many incompatibilities
– “To get things right”
– But no changes for the sake of changes
– Eventually most incompatiblities (but not all) were removed

or will be removed.
• There were good reasons for most of Numeric’s design

decisions.

2002 Python for Scientific
Computing Workshop

How: Planned incompatibilities

• Scalar-Array coercion rules
– Operation with scalar of same kind does not automatically

promote to scalar’s equivalent type.
– e.g. (Arange(10, type=Int16) * 5).type() à Int16 not Int32

• C API
– Native API supports byte-swapped, misaligned arrays
– Emulation API exists for porting Numeric extensions

• Consistent return type for single item indexing
– Unlike what “manifesto” stated, now leaning towards

returning Python scalars, not arrays
• But simple interface to get rank-0 arrays always

• Types are objects, not just string codes
– e.g. Int32 vs. ‘ i’
– But old code should work in almost all cases

2002 Python for Scientific
Computing Workshop

Future Work
(in rough order of our current priorities)

• Backward compatibility problems (as discovered)
• Rank-0 returns from single item indexing [started]
• Document C-API (with many examples) [started]
• IEEE special values getting/setting. [mostly done]
• MA port
• Index array revisions/enhancements
• Mac OS X port
• Add more 3rd party libraries
• Optimization
• Future division support
• Python object array support
• Threading support
• Long double support

2002 Python for Scientific
Computing Workshop

Discussion

• What are the community’s priorities?
– If out of whack with ours, who wants to work on

them?
• What’s missing from the to-do list?

– Integrating with weave and other scipy tools.
• Timing of switch to numarray

– Criteria for switching?
• Speed?
• Compatibility?
• Library support?
• Documentation?

