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Who:  Cast of Developers

• Perry Greenfield: original framework
• Todd Miller: most of past and ongoing development, chararray,

memmap.
• JC Hsu: recarray
• Rick White: design and early coding
• Jochen Krupper: updates to manual, conversion to Python doc 

format, work on libraries.
• Phil Hodge: original adaptation of manual
• Paul Dubois: Porting of MA package (soon)
• The past Numeric Developers!

– Jim Hugunin, Konrad Hinsen, David Ascher, Paul Dubois, 
Travis Oliphant
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What is numarray?

• Numeric descendant and replacement
• Features:

– Sub-classable arrays
– User specifiable buffer, offset, and basic stride.
– Operation on misaligned or byte-swapped arrays.
– Operation on memory-mapped arrays.
– Generation of C-code from templates
– Increased use of  Python in implementation
– More flexible IEEE error handling
– Index arrays
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Numarray Class Hierarchy

NDArray

NumArray CharArray

RecArray
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Where is numarray now?

• Virtually all the base functionality of Numeric exists 
in numarray.

• Has nearly all the desired new functionality.

• Generally as fast (if not faster) for megabyte sized 
arrays (but much slower for small--< 10K elements).

• FFT, RandomArray, LinearAlgebra libraries ported.

• Corresponding documentation (except for C-API) 
exists (i.e., manual).
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The BIG Question: Why?

We (STScI) needed capabilities that Numeric could not 
provide…easily anyway. Some background:

• Astronomical community has two large analysis 
contingents: IRAF and IDL-based.

• STScI trying to develop an environment that takes 
the best from both areas.

– PyRAF to run IRAF tasks

– Python/Numeric for IDL-style development

• But astronomers deal with big data sets: Memory 
issues!
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The BIG Question: Why? (cont.)

Manipulating large astronomical images is very 
memory intensive.

• Hubble Space Telescope now generates 4Kx4K 
images (64MB). 

• Ground-based telescopes have 8Kx8K detectors or 
larger (256MB!).

• We also have much data in record format (“ tables”) 
with large data files as well (>100MB)

We wish to write Python programs to access such data.
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The BIG Question: Why? (cont.)

Accessing tables cuts both ways. (Columns may be of 
different numeric types, or even strings.)

• By column

• By row

Numeric forces you to copy columns to individual 
arrays.

• Wastes memory

• Makes changing rows difficult

Desire generalization: arrays of records
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Example RecArray Usage

>>> import recarray

>>> a=recarray.array("a"*75, "r,3i,5a", shape=(3,), names=“theReal,theInts,theString” )

>>> print a

RecArray[ 

(2.5984589414244182e+020, array([1633771873, 1633771873, 1633771873]), 'aaaaa'),

(2.5984589414244182e+020, array([1633771873, 1633771873, 1633771873]), 'aaaaa'),

(2.5984589414244182e+020, array([1633771873, 1633771873, 1633771873]), 'aaaaa'),

]

>>> a.field(“ theReal")

array([  2.59845894e+20,   2.59845894e+20,   2.59845894e+20], type=Float32)

>>> a.field(“ theInts”)

array([[1633771873, 1633771873, 1633771873],

[1633771873, 1633771873, 1633771873],

[1633771873, 1633771873, 1633771873]])

>>> a.field(“ theString” )

CharArray(['aaaaa', 'aaaaa', 'aaaaa'])
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The BIG Question: Why? (cont.)

Use memory mapping to reduce memory demands.
• But that brings new problems, I.e., byte order.
• Very difficult to handle with Numeric.
Record arrays (tables) require being able to construct 

numeric arrays with odd offsets between elements.
• Alignment problems.
• Also very difficult to handle with Numeric.
Numeric type conversion creates large temporaries.

These three were the killer issues that ruled Numeric 
out. But there are others.
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Why: Other Numeric issues

• Guido won’ t accept Numeric into Standard Library

– Code too hard to understand and maintain.

• Scalar/Array type coercion wastes memory.

• Wasn’ t subclassible (well, not when we started, 
anyway).

• Missing unsigned ints.

• More convenient use of index arrays

• Weak IEEE support
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How: Implementation

How to handle various representations (type, byteswap, 
alignment) without impacting speed and memory use?

Studied:
• Functional – easy to implement, but too slow
• Combinatorial – efficient, but enormous code bloat
• Temporaries – fast, but far too memory intensive
Instead:
• We chose a hybrid of functional and temporaries. 

When transformations are needed, we do so in blocks, 
not too big, not too small.  
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How: Philosophy

• Do as much in Python while optimizing large array performance 
(our need, after all). 

• Defer all other optimizations as late as possible.
– Small array performance suffers (for now)
– Indexing performance suffers

• Initially we intended for many incompatibilities
– “To get things right”
– But no changes for the sake of changes
– Eventually most incompatiblities (but not all) were removed 

or will be removed. 
• There were good reasons for most of  Numeric’s design 

decisions.
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How: Planned incompatibilities

• Scalar-Array coercion rules
– Operation with scalar of same kind does not automatically 

promote to scalar’s equivalent type.
– e.g. (Arange(10, type=Int16) *  5).type() à Int16 not Int32

• C API
– Native API supports byte-swapped, misaligned arrays
– Emulation API exists for porting Numeric extensions

• Consistent return type for single item indexing
– Unlike what “manifesto”  stated, now leaning towards 

returning Python scalars, not arrays
• But simple interface to get rank-0 arrays always

• Types are objects, not just string codes
– e.g. Int32 vs. ‘ i’
– But old code should work in almost all cases
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Future Work 
(in rough order of our current priorities)

• Backward compatibility problems (as discovered)
• Rank-0 returns from single item indexing [started]
• Document C-API (with many examples) [started]
• IEEE special values getting/setting. [mostly done]
• MA port 
• Index array revisions/enhancements
• Mac OS X port
• Add more 3rd party libraries
• Optimization
• Future division support
• Python object array support
• Threading support
• Long double support
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Discussion

• What are the community’s priorities?
– If out of whack with ours, who wants to work on 

them?
• What’s missing from the to-do list?

– Integrating with weave and other scipy tools.
• Timing of switch to numarray

– Criteria for switching?
• Speed? 
• Compatibility?
• Library support? 
• Documentation?


