Appendix D

Conversion Gain Reference Sheet

The equation relating the number of electrons (e^-) in a pixel to the recorded data number (DN or ADU) goes as:

$$G_{NET} = G_{PIXEL} \times G_{UC} \times G_{OUT} \times G_{AMP} \times G_{A/D}$$ \hspace{1cm} (D.1)

Below is a short reference sheet of the experiments and what each yields.

Fe55 Calibration:

Method: Collect set of exposures that record Fe55 hits in the detector.
Histogram the hit values in ADU. The peak corresponds to 1660 e^-.

Notes: Value will depend on the gain of the control of A/D converter, G_{AMP}.

Provides: G_{net} (e^-/ADU)

Electronic Gain with V_{RESET}:

Method: Program set of voltages for V_{RESET}. Read detector output while reset switch is closed. Plot DN vs. V_{RESET} and obtain slope.

Provides:
\[G_{UC}(V/V) = \frac{\Delta V_{OUT\ NOSE}}{\Delta V_{RESET} \times G_{ELEC}}\]
\[G_{SF}(V/V) = \frac{\Delta V_{OUT\ SF}}{\Delta V_{RESET} \times G_{UC} \times G_{ELEC}}\]
A/D or Control Electronics Calibration:

Method: Use a set of known voltages as input to the A/D converter in control electronics.

Notes: G_{AMP} used here should correspond to G_{AMP} used in the 55Fe calibration.

Provides:
- $G_{ELEC}(V/ADU) = G_{AMP} \times G_{A/D}$ – If amplification stages are included
- $G_{A/D} (V/ADU)$ – If amplification stages are bypassed
- $G_{AMP} (V/V)$

Well Depth from Saturated Images

Method: Use an exposure or set of saturated exposures to find the full range of the pixels in ADU.

Notes: The full range is the average taken over all pixels of the quantity

\[FR = I_{max} - I_{min} , \]

where I_{min} is the pixel value immediately after reset and I_{max} is the pixel value before the output becomes nonlinear and saturates.

Provides:
- $WellDepth \ (ADU)$
- $WellDepth \ (e^-) = WellDepth \ (ADU) \times G_{net}$