
Satellite Control Simulation for the Cosmic X-Ray

Background NanoSat (CXBN)

Lance Simms

August 19, 2011

1 Introduction

The Cosmic X-Ray Background NanoSat (CXBN) control simulator is a Python based program
that simulates the motion of the CXBN CubeSat as it orbits Earth. It models both the orbital
propagation of the spacecraft around Earth using the Simple General Perturbations (SGP4) model
as well as the rigid body dynamics of the spacecraft about its center of mass. The latter involves
estimating the disturbing environmental torques, i.e. gravity gradient and atmospheric drag torques,
and calculating the control torques necessary for CXBN to achieve its science goals.

The purpose of this document is to

• 1) Present results from the simulations that show they are properly describing the dynamics of
the spacecraft. To accomplish this, the simple case of a passive gravity gradient satellite with-
out stabilization is presented. This case has been well studied, and for certain configurations,
closed form solutions are known [1].

• 2) Determine the proper forms for the control algorithms that will be used to orient the
satellite properly for the CXBN science goals.

2 Methods

The CXBN simulator uses a finite-difference time-stepping approach to evolve the satellite trajectory
and orientation with time. The initial time, to, is arbitrarily chosen as 2012/06/01 at 00:00:00 and
the time-step, denoted by dt, is chosen as 0.01 seconds. This time-step is sufficiently small to keep
the numerical error tame for a large amount of orbits.
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2.1 Orbital Propagation

At each time-step, the PyEphem software package (http://rhodesmill.org/pyephem/index.html)
calculates the position of the satellite in coordinates of (right-ascension, declination, elevation).
These are converted to Earth-Centered Inertial (ECI) coordinates to yield a position vector ~reci =
(XE , YE , ZE) relative to the center of Earth. The velocity of the spacecraft is then evaluated by
considering the positions at times t − dt and t + dt, before and after the current time, respec-
tively. With the position vector, ~reci, and velocity vector, ~veci, an Orbit Reference Frame (OBF) is
determined as follows:

• The XR axis is chosen so that +XR is aligned with the spacecraft velocity vector (~veci).

• The ZR axis is chosen so that −ZR is aligned with the vector to the center of the earth (−~reci).

• The YR axis completes a right-handed triad (YR = ZR ×XR).

2.2 Rigid Body Dynamics

The next thing that is handled is the orientation of the spacecraft. At time to, the body axes of the
satellite (XB , YB , ZB) are chosen so that they are aligned with the Orbit Reference Frame axes (in
certain cases, an initial Yaw, Pitch, and Roll at time to will be chosen). These frames are depicted
in Figure 1.

The Body Frame and Orbit Reference Frame will in general differ at later times due to the fact
that the satellite is moving and external torques are forcing its orientation to change. To handle
the evolution of the spacecraft orientation, the Euler equations:
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)
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are solved, where ω is the instantaneous angular velocity of the spacecraft (as measured in body

coordinates), ω̇ is the time derivative of the angular velocity, and ~T is the torque acting on the
spacecraft. I is the moment of inertia tensor. One should note that it has been defined along the
principal axes of the satellite so that it is diagonal.

Once ω̇ has been determined, it is used to evolve the orientation of the satellite according to the
prescription given by Whitemore[2]. This method utilizes quaternions to express the orientation
of the satellite and it updates them in such a way that they always maintain a unit norm. With
the updated quaternion obtained, the Direction Cosine Matrix between the Body Frame and the
Orbit Reference Frame is calculated. From the DCM, the new Yaw, Pitch, and Roll angles can be
obtained. From here, another time-step is taken and the procedure is repeated.
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Figure 1: The coordinate reference frames used in the simulation. E correponds to the Earth Cen-
tered Inertial (ECI) reference frame, B correponds to the body reference frame, and R correponds
to the satellite reference frame.

3 Initial Test with Passive Gravity Gradient Satellite

To validate the simulator is properly calculating gravity gradient torque, solving Euler’s equations,
updating quaternions, and expressing orientations with Direction Cosine Matrices, two simple sce-
narios for a passive gravity gradient (GG) stable satellite were carried out.

The GG satellite is one where the moment of inertia about the nadir-pointing axis, Iz, is made
much smaller than Ix and Iy. The large moment arms for X and Y create a large torque when
the Z axis points away from −~reci and this torque tries to restore the satellite to a nadir pointing.
If there is a source of damping, the satellite can be maintained in nadir. Without damping, the
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satellite will oscillate, and in certain cases the oscillation is very well behaved.

3.1 Gravity Gradient Test 1

For the case where the Body and Orbit Reference Frames are initally aligned, the motion of the
GG satellite is quite simple. The satellite is expected to rotate about the YB pitch axis with simple
harmonic motion as the satellite orbits the Earth. The frequency of this motion is given by

ωsim = ωo

√
3
Iy − Iz
Ix

, (4)

where ωo is the orbital rate of the satellite in radians/second.

For this first test case, the values Ix = Iy =10 kg·m2 and Iz =0.1 kg·m2 were chosen. The satellite
was placed in a circular, equatorial orbit at an elevation of ∼ 800 km. At time to, the Body and
Orbit Reference frames were aligned.

The orbital period was 14.719786 orbits/day, which corresponds to ωo = 0.00107 radians/sec. The
expected frequency for the simple harmonic motion about the YB axis is thus ωsim = 0.00184478
radians/sec, which corresponds to a period of about 3400 seconds.

As shown in Figure 2, the frequency matches very closely to the latter value. It is about 3700
seconds, as opposed to 3400 seconds. Further, the values for the Yaw and Roll stay quite close
to zero throughout the orbit. There is a small deviation of the Roll due to the fact that the
approximation to the velocity vector is not quite perfect and the numerical error in solving the
Euler equations is non-zero.

3.2 Gravity Gradient Test 2

For the second test case, the scenario in Example 5.3.1 of Sidi [1] has been followed. For this case,
Ix =80 kg·m2, Iy =82 kg·m2, and Iz =4 kg·m2. were chosen. All other aspects of the configuration
were the same is in Case 1, except that the satellite was given an inital Yaw of 5 degrees. Using
Equation 4, the expected period is nearly the same as in Case 1.
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Figure 2: Yaw, Pitch, and Roll for the simple test case of the passive gravity gradient satellite
without damping. For this case, the initial Yaw, Pitch, and Roll were all zero. The Pitch angle
undergoes simple harmonic motion with a period of about 3400 seconds, as expected. The Yaw and
Roll angles are non-zero due to numerical error.

5



Figure 3: Yaw, Pitch, and Roll for the simple test case of the passive gravity gradient satellite
without damping. For this case, the initial Yaw angle was 5 degress. The Roll and Pitch were both
zero. The Pitch angle undergoes simple harmonic motion with a period of about 3400 seconds, as
expected. The Yaw and Roll oscillate in a reasonable fashion.
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4 Full CXBN Simulation

Along with the orbit propagation, the full CXBN simulation includes gravity gradient torque, aero-
dynamic torque, and a control torque from the magnetorquers. One important aspect of magnetic
control is that magnetic sensing and controlling cannot take place at the same time. This is because
any dipole moment generated by the magnetorquers will change the magnetic field sensed by the
magnetometers. The magnetorquers must be inactive while the magnetometers are measuring the
magnetic field of the Earth.

To account for this, the simulator accounts for the measuring and torquing periods using a user
controlled duty cycle. The duty cycle spans a period of TSenseTorque, where fSenseTorque =
1/TSenseTorque. And during each period, the sensing occurs for a fraction FSense, after which
the torquing is applied for a fraction FTorque, where FSense + FTorque = 1 and both fractions are
positive.

The baseline parameters for the CXBN simulator are the following:

• fSenseTorque = 1Hz

• TSenseTorque = 1 second

• FSense = 0.5

• FTorque = 0.5

4.1 Detumbling

After ejection from the pea-pod, the CubeSat will have some unknown angular velocity vector.
This angular velocity, estimated to be approximately 20 degrees/second, will have an unknown
orientation with respect to the spacecraft body. Thus, the satellite will almost certainly undergo
torque-free precession, otherwise known as “tumbling”.

The control loop used to de-tumble with the magnetometers is based on the well-known equation

mc = −kcḂ−mconst, (5)

where

• mc is the control dipole moment generated by the magnetorquers

• kc is a control gain to be determined from simulation or empirical data

• Ḃ is the rate of change of the magnetic field as sensed by the magnetometers on the cubesat

• mconst=[0,0,mconst] is a constant component of the dipole moment aligned along the z-axis.
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This equation is easily understood by making the analogy with a compass needle that has some
damping. The second term represents the constant dipole moment that the needle would generate,
which causes the needle to align with the magnetic field. The first term damps the motion whenever
the needle is swinging fast past the alignment vector.

A test of the control loop has been performed with a time step of 0.001 seconds and initial angular
velocity of ω = [18.5◦/s,−25.0◦/s, 12.2◦/s]. The results are shown in figure 4. One can see from
the figure that the initial precession is damped out after about 1500 seconds, which corresponds to
roughly 1/2 of an orbit. The satellite is not completely stable due to the aerodynamic torque, but
it does gradually approach the stable pointing antiparallel to the magnetic field.

4.2 Detumbling with Different Sense/Torque Frequencies, fSenseTorque

As one might guess, the value of fSenseTorque must be chosen carefully. If it is too high, there
will not be ample time for averaging of the signal from the magnetometers to yield a clean mea-
surement. The change in magnetic field, ∆ ~B may also be too small if not enough time is waited
in between averagings. If ∆Bx,y,z < 3σmagnetometer, where ∆Bx,y,z represents the change in each
component of the field and σmagnetometer is the root mean square of the noise inherent in reading
the magnetometer, then the torque generated will in a completely random direction.

On the other hand, if fSenseTorque is too low, then the magnetic field may change drastically between
readings and create torques that are far too high. The value of fSenseTorque= 1Hz is sufficiently
high to ensure this is not the case. In 1 second, the spacecraft travels about 7.8 km. A degree
of latitude corresponds to about 110 km, so that distance is roughly 0.072◦. Over this angular
scale, the magnetic field components change by less than 3%, even at points on the earth where the
magnetic contours are closest together.

Figures 4 and 5 show the difference between frequencies of 1Hz and 10Hz, respectively. One can
see that the 10Hz loop results in more instabilities than the 1Hz loop because ∆ ~B is not large
enough to generate the torque necessary to keep the spacecraft stably pointed along the magnetic
field vector ~B.
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Figure 4: The upper plot shows the angular velocity (measured in the body frame) of
the satellite during the de-tumbling phase. The initial angular velocity vector was ω =
[18.5◦/s,−25.0◦/s, 12.2◦/s] and the frequency for applying the torques is fSenseTorque= 1Hz. The
lower plot shows the angle between the magnetic field and the z-axis of the satellite. Note that
orientations with +z and -z along the magnetic field are both stable solutions.
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Figure 5: The same plots as in Figure 4 except that fSenseTorque= 10Hz. One can see that the
higher frequency results in less stability due to the fact that the magnetic field does not change
appreciably over the 0.1 second interval. This will be especially problematic in the presence of
noise.
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5 Coarse Sun Acquisition with Solar Panels

Once detumbling has taken place, the next step is to orient the spacecraft so that its z-axis aligns
with the sun pointing vector. In this position, the solar panels will be fully illuminated and provide
maximum power to the spacecraft.

While the medium and fine sun sensors will eventually provide precise information on the alignment,
at first the spacecraft will rely on the currents sensed in each solar panel. A misalignment will cause
the spacecraft body to cast a shadow on some of the solar panels, and a subsequent reduction in
current for those panels. For a given axis (x or y), the difference in currents between the two solar
panels along that axis can be used as a proxy for the torque about that axis.

The acquisition algorithm goes as follows. First, the difference between the solar panel currents
along the x and y axes are measured.

∆Ix = I+x − I−x (6)

∆Iy = I+y − I−y. (7)

Then, the desired angular angular velocities about these axes are calculated using a Proportional
and Derivative term.

ωx desired = kt∆Ix + kωωx measured (8)

ωy desired = kt∆Iy + kωωy measured (9)

ωz desired = 0, (10)

where ωdesired are the desired angular velocity components, ωmeasured are the angular velocity
components measured by the gyros, and kt and kω are the P and D terms, respectively. A proper
choice of these is dependent on the moment of inertia tensor of the satellite and the values of current
expected in the solar panels.

Once these desired components have been calculated, the magnetic moment components are calcu-
lated as follows:

mc = − 1

|B|
~ω ×B (11)

This last equation is a common method to calculate the magnetic moment components based upon
a desired angular velocity.

Figure 6 shows results from simulations where these values were chosen at kt = 0.001 and kω =
−0.10. One can see that the angle between the z-axis and the sun pointing vector quickly goes to
zero. The angular velocity about the z-axis does not go to zero. This must be dealt with at a later
stage when the sun sensors take over: a task that remains to be completed by the CXBN team.
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Figure 6: The upper plot shows the angular velocity (measured in the body frame) of the satellite
during sun acquisition with the solar panel currents. The initial angular velocity vector was ω =
[0◦/s, 0◦/s, 0◦/s], based on the assumption that the satellite had already detumbled. The lower
plot shows the angle between the sun pointing vector and the z-axis of the satellite.
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6 Conclusion and Next Steps

The previous results show that the CXBN simulator is properly handling the dynamics of the
satellite as it orbits Earth. There is a good match between the numerical and analytical solutions
of the passive GG satellite; the small discrepancy is likely a result of the PyEphem treatment of
the orbit or numerical error. The aerodynamic torque also produces the expected behavior. With
respect to the control torques, in detumbling, the magnetic torque damps the motion of the satellite
and aligns the z-axis with the magnetic field of the Earth. And in sun acquistion, it similary aligns
with the sun pointing vector.

The next steps should be to

1. Create a function to perform the spin-up phase.

2. Create a function to model the medium and fine sun sensors.

3. Create a function to model the Canopus pipper.
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